本文最后更新于 26 天前,其中的信息可能已经有所发展或是发生改变。
文件信息
脱壳部分
这里查到一个Themida3.X的壳,通过搜索,github有一个开源项目用于脱掉这种壳
项目地址:https://github.com/ergrelet/unlicense
我们下载该项目的release就可以了,之后使用对应的exe去打开题目附件
去除花指令
这main函数一样经典花指令,先把上面的jz/jnz原地跳转nop了,再把下面的call去D一下,然后把0E8h
nop掉,剩下的C将字节码转成汇编,选中全部的main函数p一下定义就可以了
修好主函数的花指令之后应该是这样:
int __cdecl main(int argc, const char **argv, const char **envp)
{
char v4[44]; // [esp+14h] [ebp-90h]
int i; // [esp+40h] [ebp-64h]
int j; // [esp+44h] [ebp-60h]
char v7[44]; // [esp+48h] [ebp-5Ch] BYREF
char v8[44]; // [esp+74h] [ebp-30h] BYREF
v4[0] = 0x50;
v4[1] = 0xD4;
v4[2] = 0xC8;
v4[3] = 0xC4;
v4[4] = 0x8F;
v4[5] = 0x84;
v4[6] = 0x40;
v4[7] = 0xEB;
v4[8] = 0x32;
v4[9] = 0x81;
v4[10] = 0x8F;
v4[11] = 0x85;
v4[12] = 0x6C;
v4[13] = 0xB2;
v4[14] = 0x2B;
v4[15] = 6;
v4[16] = 0xBF;
v4[17] = 5;
v4[18] = 0x35;
v4[19] = 0x5D;
v4[20] = 0x2E;
v4[21] = 0xE3;
v4[22] = 0x7D;
v4[23] = 0x46;
v4[24] = 0x8D;
v4[25] = 0x35;
v4[26] = 1;
v4[27] = 0x70;
v4[28] = 0x3A;
v4[29] = 0x80;
v4[30] = 0x81;
v4[31] = 0xC5;
v4[32] = 0xE6;
v4[33] = 0x71;
v4[34] = 0xD3;
v4[35] = 0xD6;
v4[36] = 0x50;
v4[37] = 0x69;
v4[38] = 0x6F;
v4[39] = 0xE2;
v4[40] = 0x6E;
v4[41] = 0x78;
v4[42] = 0x14;
v4[43] = 0xD8;
sub_F61020(Format, aPleaseEnterYou);
sub_F61050("%s", v7);
(loc_F61290)(v7, v8);
for ( i = 0; i <= 36; ++i )
(loc_F613C0)(&v8[i]);
for ( j = 0; j < 44; ++j )
{
if ( v4[j] != v8[j] )
{
sub_F61020(Format, aWrong);
break;
}
}
if ( j == 44 )
sub_F61020(Format, aCongratulation);
return 0;
}
逻辑还是很清晰的,v4就是我们的密文,然后printf和scanf就不过多讲述了,发现了两个函数loc_F61290
和loc_F613C0
都对我们的输入进行了操作,最后跟密文进行比较
双击进入这两个函数之后发现直接跳到汇编了,说明是无法F5的,然后又看见了经典的jz/jnz
和 call near ptr
,我们继续nop去花
将几处花全部去掉之后就能够看见函数的具体实现了,我技术有限,也就只能修成这样了
RC4加密
sub_1290:
char __cdecl sub_F61290(char *a1, int a2)
{
char result; // al
unsigned int i; // [esp+18h] [ebp-10h]
char *v4; // [esp+1Ch] [ebp-Ch]
unsigned __int8 v6; // [esp+26h] [ebp-2h]
unsigned __int8 v7; // [esp+27h] [ebp-1h]
v7 = 0;
v6 = 0;
sub_F610C0();
v4 = a1;
do
result = *v4;
while ( *v4++ );
for ( i = 0; i < v4 - (a1 + 1); ++i )
{
v6 += byte_F643B0[++v7];
sub_F61080(&byte_F643B0[v7], &byte_F643B0[v6]);
*(i + a2) = (byte_F643B0[(byte_F643B0[v6] + byte_F643B0[v7])] ^ 0x33) + a1[i];
result = i + 1;
}
return result;
}
其中的sub_F610C0函数是这样的
void *sub_F610C0()
{
void *result; // eax
int v1; // [esp+18h] [ebp-128h]
int j; // [esp+1Ch] [ebp-124h]
char *v3; // [esp+20h] [ebp-120h]
unsigned int i; // [esp+24h] [ebp-11Ch]
int k; // [esp+28h] [ebp-118h]
char v6[256]; // [esp+30h] [ebp-110h] BYREF
char v7[12]; // [esp+130h] [ebp-10h] BYREF
strcpy(v7, "th0s_i0_ke9");
for ( i = 0; i < 0x100; ++i )
byte_F643B0[i] = i;
v3 = &v7[strlen(v7) + 1];
result = memset(v6, 0, sizeof(v6));
for ( j = 0; j < 256; ++j )
{
result = j;
v6[j] = v7[j % (v3 - &v7[1])];
}
v1 = 0;
for ( k = 0; k < 256; ++k )
{
v1 = (v6[k] + v1 + byte_F643B0[k]) % 256;
result = sub_F61080(&byte_F643B0[k], &byte_F643B0[v1]);
}
return result;
}
不难看出这是一个RC4的加密,不过有些许魔改,循环了44和异或了0x33
52的佬还是讲得很好的
xTEA加密
sub_F613C0:
int *__cdecl sub_F613C0(int *a1)
{
int *result; // eax
int v2[4]; // [esp+Ch] [ebp-24h]
int v3; // [esp+1Ch] [ebp-14h]
int i; // [esp+20h] [ebp-10h]
unsigned int v5; // [esp+24h] [ebp-Ch]
unsigned int v6; // [esp+28h] [ebp-8h]
unsigned int v7; // [esp+2Ch] [ebp-4h]
v2[0] = 0x6E982837;
v2[1] = 0x44332211;
v2[2] = 0x11223344;
v2[3] = 0x3728986E;
v6 = *a1;
v5 = a1[1];
v7 = 0x66778899;
v3 = 0x9E3779B8;
for ( i = 0; i <= 32; ++i )
{
v6 += (v2[v7 & 3] + v7) ^ (v5 + ((v5 >> 6) ^ (32 * v5)));
v7 += v3;
v5 += (v2[(v7 >> 11) & 3] + v7) ^ (v6 + ((v6 >> 5) ^ (16 * v6)));
}
*a1 = v6;
result = a1;
a1[1] = v5;
return result;
}
这个不用解释了,一眼xTEA,不过还是进行了一定的魔改,比如说轮次变成了33,在主函数中又循环了37次(头大
exp
既然如此每个步骤都分析完了写个解密脚本不是简简单单(bushi
#include <iostream>
#include <cstring>
#include <cstdint>
using namespace std;
unsigned char S[256];
void swap(unsigned char& a, unsigned char& b) {
unsigned char temp = a;
a = b;
b = temp;
}
void rc4_key_setup(unsigned char* key, int key_length, unsigned char S[256]) {
unsigned char T[256];
int j = 0;
for (int i = 0; i < 256; i++) {
S[i] = i;
T[i] = key[i % key_length];
}
for (int i = 0; i < 256; i++) {
j = (j + S[i] + T[i]) % 256;
swap(S[i], S[j]);
}
}
void decrypt(const char* a1, char* a2, int length) {
unsigned char v6 = 0;
unsigned char v7 = 0;
for (int i = 0; i < length; ++i) {
v6 += S[++v7];
swap(S[v7], S[v6]);
a2[i] = a1[i] - (S[(unsigned char)(S[v6] + S[v7])] ^ 0x33);
}
}
void xtea_decrypt(uint32_t* a1) {
int v2[4] = { 1855465527, 1144201745, 287454020, 925407342 };
uint32_t v6 = a1[0];
uint32_t v5 = a1[1];
uint32_t v7 = 1719109785 + (0x9E3779B8 * 33);
int v3 = 0x9E3779B8;
for (int i = 0; i <= 32; ++i) {
v5 -= (v2[(v7 >> 11) & 3] + v7) ^ (v6 + ((v6 >> 5) ^ (16 * v6)));
v7 -= v3;
v6 -= (v2[v7 & 3] + v7) ^ (v5 + ((v5 >> 6) ^ (32 * v5)));
}
a1[0] = v6;
a1[1] = v5;
}
int main() {
unsigned char key[] = "th0s_i0_ke9";
int key_length = strlen((const char*)key);
// 初始化S盒
rc4_key_setup(key, key_length, S);
unsigned char encenc[] = {
0x50, 0xD4, 0xC8, 0xC4, 0x8F, 0x84, 0x40, 0xEB, 0x32,
0x81, 0x8F, 0x85, 0x6C, 0xB2, 0x2B, 0x06, 0xBF, 0x05,
0x35, 0x5D, 0x2E, 0xE3, 0x7D, 0x46, 0x8D, 0x35, 0x01,
0x70, 0x3A, 0x80, 0x81, 0xC5, 0xE6, 0x71, 0xD3, 0xD6,
0x50, 0x69, 0x6F, 0xE2, 0x6E, 0x78, 0x14, 0xD8, 0x25
};
// XTEA解密
for (int i = 36; i >= 0; i--) {
xtea_decrypt((uint32_t*)&encenc[i]);
}
// RC4解密
char encrypted_data[45]; // 注意这里需要 +1 以容纳结束符
decrypt((char*)encenc, encrypted_data, 44);
encrypted_data[44] = '\0'; // 添加结束符
cout << encrypted_data << endl;
return 0;
}
//DASCTF{Th1l_t8e1a_rc4_l8s_s8o_int9r3es4t1ng}